PMT

PH5

Question		n	Marking details	Marks Available
SECTION A				
1	(a)	(i)	$C = \frac{Q}{V}$ understood (1) [or by impl.]	
			i.e Rearranging to give $V = Q/C$ or substitution of capacitance for C and charge for Q V = 12.5(3) V(1)	2
		(ii)	$C = \frac{\varepsilon_0 A}{d}$ understood [simply quoting is not enough] (1) [substitution	
			of all quantities except d] $d = 9.44 \times 10^{-4}$ m [accept 0.9 mm] (1)	2
	(b)		$Q = Q_o \exp\left(\frac{-t}{RC}\right)$ understood (1) [substitution]	
			Taking logs correctly e.g. $\ln Q = \ln Q_o - \frac{t}{RC}$ (1)	
			Algebra e.g. $-1.9 = \frac{-t}{15 \times 10^6 \times 375 \times 10^{-12}}$ (1)	
			t = 0.01 [0.007] s (1) [Use of $\log_{10} \rightarrow 0.47$: treat as calculator slip $\rightarrow 3 \text{ marks}$]	
			[Mysterious vanishing of minus sign \rightarrow slip]	4
	(c)		[Dielectric (or water)] increases C <u>or</u> allows more Q to be stored [accept: store more energy or time constant increased] (1)	
			so change in C or Q means fog <u>or</u> use coulometer to measure Q (1)	
			or use multi(meter) to measure C [or voltage]	
			NB. 0 marks awarded for answers referring to conduction by water.	2
				[10]

Question		n	Marking details	Marks Available
SEC'	Available			
2	(a)		$B = \frac{\mu_0 I}{2\pi a} \text{ understood } [\text{or } B = 4.8 \times 10^{-7} \text{ T}] (1) [\text{not } \mu_0 n I]$ either 5 × 4.8 × 10 ⁻⁷ or $B = \frac{4\pi \times 10^{-7} \times 1.5}{2\pi \times 0.125} (1)$	2
	<i>(b)</i>	(i)	$\sin \theta = 0^{\circ}$ or $\theta = 0^{\circ}$ or $\theta = 180, \pi$ etc (1) Travels along [parallel or opposite to] field lines (1) [NB: 2 nd mark implies first] "to the right" $\rightarrow 0$	
		(ii)	"to the right parallel to field" \rightarrow 1 bod. $F = Bq \sin \theta$ understood (1) [or by impl.], i.e. $\theta = 90^{\circ}$ calculated [by using $q = 1e$] \rightarrow 1 mark	2
			$\theta = 30^{\circ} / 0.52 \text{ radian (1)}$	2
	(c)	(i) (ii)	Arrow anti-clockwise \checkmark $Bqv = \frac{mv^2}{r}$ [or $mr\omega^2$] [accept $r = \frac{mv}{R_{\pi}}$] (1)	1
			$r = 4 \times 1.66 \times 10^{-27}$ kg and $q = 2e$ [e.c.f. on q] (1) r = 76.08 km (1)	
			Allow ecf on $q = 1e$ i.e. $\rightarrow r = 157$ km [$\rightarrow 2/3$ marks]	3
				[10]

Question			Markin	Marks Available	
SEC					
3	(a)		Either Flux changes (1) <u>hence emf_induced</u> (1) [Because of RH rule or Faraday $\rightarrow 2^{nd}$ mark, but not 1 st mark] flux increases and decreases [implies 1 st mark] [i.e. $\frac{d\Phi}{dt}$ alternates implied](1) NB. "Change in field" not 1 st mark but others available]	Or B-lines being cut (1) <u>hence emf_induced</u> (1) [Because of RH rule or Faraday $\rightarrow 2^{nd}$ mark, but not 1 st mark] direction of cutting changing (1) [Not "magnet oscillating" accept "magnet changing direction [of motion]"]	3
	(b)	(i) (ii)	$V_{\rm rms} = \frac{Vo}{\sqrt{2}} = 0.5 \rm V$ Rate of change of flux (linkage) = from Faraday's [or Neuman's] law [Independent mark – must be stated For 1 turn = $\frac{0.707}{200} = 0.0035(35) \rm W$	0.707 [V] (1) or $E = N \frac{d\Phi}{dt}$ [allow $E = \frac{\Phi}{t}$](1) d] $Vbs^{-1}(1)$	1
	(c)		NB. 0.0025 Wb s ⁻¹ [from use of V Stating or implying that there is a r Opposes motion / due to Lenz's lav Detail given, e.g. loss (dissipation) resistance, polarity of coil discusse against resistive force (1)	= 0.5 V]→ 2 if 2^{nd} mark awarded. magnetic field set up in the coil (1) w (1) of energy due to current or ed [can imply 1^{st} mark], work done	3 3 [10]

Question			Marking details	Marks Available
SEC	TION	Α		
4	(a)		γ (1) Needs high penetration (1) [or to irradiate shielded side of metal, or because α and β not penetrating enough etc.] [NB. 2nd mark cannot be given if 1 st mark not awarded]	2
	(b)	(i) (ii)	$\lambda = \frac{\ln 2}{T_{\frac{1}{2}}} \text{ understood (1)}$ $\lambda = 0.1[308] \text{ year}^{-1} / 4[.14] \times 10^{-9} \text{ s}^{-1} ((\textbf{unit})) [\text{accept Bq}] (1)$ [allow ecf on log ₁₀ used $\rightarrow 1.8 \times 10^{-9} \text{ s}^{-1} / 0.057 \text{ year}^{-1}]$ [NB per year or per second] Attempt at using $A = 2N(1)$ [allow use of number of moles for N]	2
		(iii)	$1 \text{ mg} = \frac{1}{60} \times 10^{-3} \text{ mol or } N = 10^{19} \text{ (1)}$ $A = 4.16 \times 10^{10} \text{ Bq [or } 1.31 \times 10^{18} \text{ year}^{-1]} \text{ (1) [NB No unit penalty]}$	3
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 [10]

Question		n	Marking details	Marks	
SEC	SECTION A				
5	(a)		Conservation of A and Z (1) ${}^{241}_{95}\text{Am} \rightarrow {}^{237}_{93}\text{Np} + {}^{4}_{2}\alpha(1)$ ${}^{241}_{95}\text{Am} \rightarrow {}^{241}_{96}\text{Np} + {}^{0}_{1}\alpha \rightarrow 1 \text{ mark}$ But not ${}^{241}_{05}\text{Am} \rightarrow {}^{237}_{92}\text{Np} + {}^{0}_{0}\alpha$	2	
	<i>(b)</i>		Attempt at LHS – RHS [= 0.00608 but allow slips] (1) Mass in u × 931 (1) or $E = mc^2$ [with mass in kg] (1) = 5.66 MeV (1) ((unit)) or 9.06 × 10 ⁻¹² J ((unit))	3	
	(c)	(i)	attempt at total mass of p + n (1) [e.g. = 95 m_p + 146 m_n] - 241.00471 (1) [1.95125] ×931 and ÷ 241 (1) or $E = mc^2$ and ÷ 241 = 7.5[378] MeV / nucleon (1) or 1.206 × 10 ⁻¹² J/nucleon [Slips in total mass can get first 3 marks] NB mixing up number of protons and neutrons → 7.27 MeV/nucleon	4	
		(ii)	Plot answer on graph e.c.f. $\pm \frac{1}{2}$ square [7.4 - 7.6 MeV/nucleon and 238-244 for nucleon number]	1	
				10	

Question			Marking details	Marks Available			
SEC	SECTION A						
6.	(a)		Insert a voltmeter [V in a circle] on the diagram between front and back faces	1			
	<i>(b)</i>		<u>Electrons</u> feel force due to B-field [or Bqv or FLHR; accept $Bll j$ (1) Force towards rear face [accept electrons move to rear face or into the page] (1)				
			Leaving / hence front positive (or shortage of electrons) (1)	3			
	(\mathbf{r})						
	(C)		$E = \frac{V}{d}$ (1) [or by impl.] = $\frac{8.5 \times 10^{-5}}{0.004}$ = 2.125 V m ⁻¹ (1)	2			
	(d)		$Bqv = Eq (1)$ $v = \frac{I}{nAe} (\text{rearrange}) (1)$ $E = \frac{BI}{nAe} (1) [\text{subst}]$ $n = \frac{BI}{EAe} (1) = 5.15 \times 10^{21} \text{ m}^{-3}$ or $V_H = \frac{BI}{ntq} (1)$ $\rightarrow n = 5.15 \times 10^{21} \text{ m}^{-3}$ $((\text{unit})) (1)$ $Max 2/4 \text{ for remembering equation}$				
			((unit))	4			
				10			

Question		n Marking details	Marks Available	
SE				
7	(a)	Correct substation into speed = $\frac{\text{distance}}{\text{time}}$ (1)		
		$\left[t = \frac{8 \times 10^8}{3 \times 10^8}\right] = 2.67 \text{ s (1)} \left[\text{Accept fraction } \frac{8}{3}\right]$	2	
	<i>(b)</i>	After travelling both ways extra distance is $\lambda/2(1)$		
		Hence destructive <u>interference</u> or <u>antiphase / completely out of</u> <u>phase(1)</u>	2	
	(c)	use of $n\lambda = d\sin\theta$ e.g. $7 \times 640 = 815\sin\theta(1)$		
	(-)	$d = 1.23 \times 10^{-5} \text{ m} (1) [\text{accent}^{1}/_{\text{ot}} \text{ col}]$		
		any 2 of $\theta_1 = 2.99$, $\theta_2 = 5.99$, $\theta_3 = 9.00$ (1)		
		Sensible comment, e.g. true, nearly true <u>or</u> wrong[if qualified, e.g.		
		separation increases slightly etc.] [e.c.f.](1)		
		[1 st mark required for 3 rd mark to be awarded]		
			4	
	(d)	$N \times \frac{1}{2}mc^2 = \frac{3}{2}nRT$ or $\frac{1}{2}mc^2 = \frac{3}{2}kT$ (1) [or by impl.]		
		Algebra $\overline{c^2} = \frac{3kT}{m}$ (1) [or by impl.]		
		$\sqrt{\overline{c^2}} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \times 300}{23 \times 1.66 \times 10^{-27}}} = [570.35 \text{ m s}^{-1}] (1)$		
		NB. Mixing up m/M and n / N with correct algebra $\rightarrow 1$.	3	
	(e)	Any $3 \times (1)$ from		
		• 0.97 GHz corresponds to Doppler shift [due to 570 m s ⁻¹]/		
		 Sodium atom moving towards laser we get resonant 		
		absorption / wavelength [or frequency or energy] is exactly		
		right \checkmark		
		• \therefore slowing down is tuned or more probable etc \checkmark		
		• If atom moving away there is a shift <u>away from</u> resonance /		
		absorption less probable ✓		
		[INB more strongly absorbed", "Doppler-shifted up 0.9/ GHz", "Match the resonance frequency" are phrases in the passage 1	2	
		match the resonance nequency are phrases in the passage.]	5	

Question		n	Marking details	Marks Available
SE	CTIO	N B		11 (unitable
		-		
7	Ø		Photon energy = $\frac{hc}{\lambda}$ or hf and $c = \frac{f}{\lambda}(1) [= 3.825 \times 10^{-19} \text{ J}]$ No. of photos/sec = power ÷ photon energy (1.93×10^{10}) (1) Momentum of 1 photon = $h / \lambda = 1.275 \times 10^{-27} \text{ kg ms}^{-1}$ (1) [indep. mark] Force = $1.93 \times 10^{10} \times 1.275 \times 10^{-27} \times \sin 30 = 1.23 \times 10^{-17} \text{ N}$ (1) [Slip with nm / m \rightarrow allow ecf] Alternative Method: Power	
			Force = $\frac{\text{Power}}{c}$ (1) [or by impl.] = 2.467×10 ⁻¹⁷ N (1) Force upwards (on particle) = Force down on light or reference to <i>F</i> = rate of change of momentum(1) = 2.467×10 ⁻¹⁷ ×sin 30° = 123×10 ⁻¹⁷ N (1)	4
	(g)		 Good Lasts long time [accept: sustainable / renewable, lasts 000s years] No nuclear waste [accept: no harmful waste but not "no waste"] High concentration of energy e.g. per kilogram No carbon emissions / use less non-renewables Abundance of fuel / deuterium [and lithium] [not tritium → sif] 	2
			 Could be profitable soon Bad Tritium from where / needs generation Does not work yet / huge energy in for little out [needs slightly more than "hasn't got to breakeven"] Induced nuclear waste. Set-up / research costs Possible military use Any 2 or 3 advantages and/or disadvantage → 1 4 statements with at least 1 of each (1) 	
				[20]

Question		n	Marking details	Marks Available
SE	CTIO	N C		
8	(a)		Laminated (or equivalent) (1) to prevent eddy currents (1) Suitable material for core (1) to avoid magnetising/hysterises losses (1)	4
	(b)	(i)	First mark for diagram with $V_{\rm L}$, $V_{\rm C}$, $V_{\rm R}$ perpendicular with $V_{\rm L}$, opposite $V_{\rm C}$ [or impedances] (1)	
			resultant reactive impedance is $\omega L - \frac{1}{\omega C}$ [or $V_{\text{react}} = V_L - V_C$],	
			shown on the diagram(1)	
			Resultant [justified] = $\sqrt{\text{etc.}(1)}$	
			or $V = \sqrt{(V_{\rm L} - V_{\rm C})^2 + V_{\rm R}^2}$ and $V = \sqrt{(I\omega L - \frac{I}{\omega C})^2 + I^2 R^2}$	3
		(ii)	$f = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$ or $\omega = \sqrt{\frac{1}{LC}}$ or $\omega L = \frac{1}{\omega C} (1)$	
			Convincing substitution and/or algebra (1)	2
		(iii)	$\left[I = \frac{V}{R} = \right] \frac{12}{280} (1)$	
			Since all voltage across $R \text{ or } V_L$ and V_C cancel (or X_L and X_C) (1)	2
		(1V)	Equation used e.g. $Q = \frac{\omega L}{R}$ or $\frac{1}{\omega CR}$ used (1)	
			Answer = $2.97 \text{ or } (3) (1)$	2
		(v)	Attempt at substitution e.g. accept $\sqrt{\left(10.35 \times 64 - \frac{1}{10.35 \times 9.2}\right)^2 + 280^2}$	
			$Z = 1286 \Omega(1)$	
			$I = \frac{V}{Z}(1) \text{ [independent mark]} = 9.3 \text{ mA (1)}$	4
		(vi)	ωL doubled and $\frac{I}{\omega C}$ halved(1)	
			$X_{\rm C}$ and $X_{\rm L}$ switched (1)(cf(v)) (416–1671) ² = (1671–416) ² or equivalent –ve number squared. (1) Alternative: $X_{\rm C}$ =1671 and $X_{\rm L}$ = 416 and <i>R</i> =280 [used or implied](1)	
			$Z = 1286(\Omega 2) - $ <u>clearly</u> shown (1) 3^{rd} mark – noticing X_c and X_t swapped (1)	3
			- main notiong ist and ist on appeal(1)	5
				[20]

Question			Marking details	Marks Available
9	<i>(a)</i>	(i) (ii)	 I. Studied reflected light (from glass plate) (1) Reflection from 2nd plate depends on orientation (not just angle of inc.) / Light asymmetrical about direction of travel / Reflected light polarised (1) II. Developed wave theory mathematically (1) accounted for polarisation by reflection or double refraction or diffraction patterns of various obstacles or why we cannot see around corners (1) Requires stiff (or solid) medium (where light travels) (1) which would also support longitudinal waves but not observed or would prevent movement of 'ordinary' objects. (1) 	2 2 2
	<i>(b)</i>	(i) (ii) (iii) (iv)	Magnetic fields – rotating vortices (1) Electric fields – stress (or strain) in vortex material (1) Density and stiffness His ether (or equations) predicted $c = \sqrt{\frac{1}{\varepsilon_0 \mu_0}}$ (1) Experiment confirmed this (within uncertainties).(1) Oscillating <i>E</i> and <i>B</i> fields. (1) <i>E</i> and <i>B</i> at right angles to each other and to the propagation direction. (1)	2 1 2
	(C)	(i) (ii)	Principle of Relativity understood (either by statement or implied) (1) Not consistent as laws [of E-M] would have special form in this frame (also implies first mark). (1) I. 6.39 µs II. $\Delta \tau = \Delta t \sqrt{1 - \frac{v^2}{c^2}}$ (1) = 0.625 µs (1) [65.3 µs \rightarrow 0 marks] III. 0.706 µs (1) approximately 10% (or 13%) out (1) [or any other correct and relevant remark]	2 1 2 2
				[20]

Question			Marking details	Marks Available
10	(a)	(i)	LCS – largest plastic deformation	1
А		(ii)	QAS – highest breaking stress	1
	(b)		All are same / similar from initial gradients.	1
	(c)		HCS has greater strength and stiffness (1)	
			Carbon in (crystal) lattice (1)	
			Hinders/opposes/stops dislocation movement (1)	
			Hence more opposition to plastic deformation in HCS (1)	4
	(d)	(i)	$\frac{1}{2}mv^{2} = \frac{1}{2}Fx(1) \times \frac{1}{4}(1)$	
			$m = \rho A l (1) + \text{convincing algebra} (1)$	4
		(ii)	$\varepsilon = 0.002 (1)$	
			$1\sqrt{700 \times 10^6 \times 0.002}$	
			$v = \frac{1}{2} \sqrt{\frac{760 \times 10^{-1} \times 0.002}{8000}} = 6.6 \text{ m s}^{-1} \text{ [answer] (1)}$	2
		(:::)	$2\sqrt{8000}$	2
		(111)	Accept either LCS of QAS with sensible reason.	
			e.g. LCS has a higher of eaking speed (1) because the area under the	
			$\alpha r OAS$ has a higher speed (1) because the area under the graph in	
			the elastic region is higger (1)	2
				2
В	(a)		2.6 \rightarrow 2.7 GPa from the graph (1)	
			8.3→8.65 kg (1)	2
	(b)		This fibres have favor surface imperfactions (1)	
	(U)		Very thin fibres have no surface imperfections (1)	2
			very unit notes have no surface imperfections (1)	۷.
	(c)		Thin glass fibres encased in resin / epoxy / plastic material	1
				[20]

Question			Marking details	Marks Available
11	<i>(a)</i>	(i)	Same shape, below and longer minimum λ_0 (1)	
		<i></i>	peaks in same place (1)	2
		(11)	Peaks/spikes/line spectrum <u>move.</u>	l
		(111)	$eV = \frac{hc}{\lambda}(1)$	
			$\lambda = 1.66 \times 10^{-11} \mathrm{m} (1)$	2
		(iv)	P = IV = 9375 W(1)	
			99.5% heat = $0.995 \times 9375 = 9328W(1)$	2
			<u>Or</u> comment that roughly all 9375W dissipated as heat.	2
	<i>(b)</i>		CT detector(s) rotate (1) about patient / analysis point.	
			Multiple detectors output to computer (1)	
			Series of 2D images obtained or 3D image obtained (1)	3
	(c)		Radio waves [2-100 MHz] (1)	
			Resonate or Same/match frequency of [hydrogen] nuclear rotation [or precession] (1)	
			Causes them to flip/change (1) [Not just: change spin]	3
	(d)	(i)	crystal deforms / vibrates [when alternating p.d. applied]	1
		(ii)	$\frac{\Delta\lambda}{\lambda} = \frac{2v}{c}(1)$	
			$v = 0.9 \text{ m s}^{-1}$ (1) [e.c.f. on missing factor of 2]	2
	(e)	(i)	Mention of free radicals (1) [or equivalent e.g. produces	
	(0)	(-)	chemicals/ions/atoms which react/are highly reactive].	
			Damages DNA/cells/molecules (1)	2
		(ii)	Absorbed dose = energy (absorbed) per unit mass.	
			Dose equivalent = absorbed dose \times Q[uality] factor.	2
				[20]

Question			Marking details	Marks Available
12	(a)	<i>(a)</i> (i)	Power = solar constant × area [or by impl.] (1) = 1.0686×10^{10} W / 1.0686×10^{7} kW / 10.7 GW or equiv (1).	2
		(ii)	$P = \sigma AT^4$ understood [accept $5.67 \times 10^{-8} \times A \times 5778$] – i.e. 2 terms identified although missing (1) $P = 4\pi r^2$ quoted (1) $P = 3.85 \times 10^{26}$ W (1)	
			Solar constant = $\frac{3.85 \times 10^{26}}{4\pi \times (1.496 \times 10^{11})^2}$ [=1368 W m ⁻²]	4
	<i>(b)</i>		Hours in one year = $24 \times 365[.25]$ [or by impl.] (1) Total units = $1.0686 \times 10^7 \times 24 \times 365 \times 0.4$ [or by impl.] (1) Money = units $\times 0.2 = \text{\pounds}7.5$ billion / 7.5×10^{11} p / $\text{\pounds}7.489 \times 10^9$ (1)	
	(c)		Volume = area × thickness [or by impl.] (1) Mass = density × volume [or by impl.] (1) [manip] Mass = 4.95×10^6 kg (1)	
	(d)		$4.95 \times 10^6 \div 2500 = 198$ missions [or by impl.] (1) [ecf from (c)] $\times 350 \times 10^6 = \text{\pounds } 69.3$ bn [or equiv.] (1)	2
	(e)		Heat engines inefficient [or by impl.] (1)	
			Since $1 - \frac{T_1}{T_2} \approx 1 - \frac{300}{400} \approx 0.25$ (1) "which is poor" implies first mark.	
			NB. T_2 in range 373 – 1700 K and T_1 in range 273 – 900 K [$< T_2$]	2
	Ø		 Reasonable since costs recovered in 9/10 years (1) (ignoring time for 200 shuttle missions) + Any 3 × (1) good points: Not weather dependant ✓ Solar power at night ✓ Less/no atmospheric absorption by microwaves ✓ 	
			 I ime for 200 shuttle missions ✓ Shuttle program ended ✓ 	4
				[20]