PH5

Question			Marking details	Marks
SECTION A				
1	(a)	(i)	$C=\frac{Q}{V}$ understood (1) [or by impl.] i.e Rearranging to give $V=Q / C$ or substitution of capacitance for C and charge for Q $V=12.5(3) \mathrm{V}(1)$ $C=\frac{\varepsilon_{0} A}{d}$ understood [simply quoting is not enough] (1) [substitution of all quantities except $d]$ $\left.d=9.44 \times 10^{-4} \mathrm{~m} \text { [accept } 0.9 \mathrm{~mm}\right](1)$	2 2
	(b)		$Q=Q_{o} \exp \left(\frac{-t}{R C}\right)$ understood (1) [substitution] Taking logs correctly e.g. $\ln Q=\ln Q_{o}-\frac{t}{R C}$ (1) Algebra e.g. $-1.9=\frac{-t}{15 \times 10^{6} \times 375 \times 10^{-12}}(1)$ $t=0.01[0.007] \mathrm{s}(1)$ [Use of $\log _{10} \rightarrow 0.47$: treat as calculator slip $\rightarrow 3$ marks] [Mysterious vanishing of minus sign \rightarrow slip]	4
	(c)		[Dielectric (or water)] increases C or allows more Q to be stored [accept: store more energy or time constant increased] (1) $\left.\begin{array}{l} \text { so change in } C \text { or } Q \text { means fog } \tag{1}\\ \text { or use coulometer to measure } Q \\ \text { or use multi(meter) to measure } C \text { [or voltage] } \end{array}\right\}$	2
				[10]

	uest		Marking details	Marks Available
SECTION C				
8	(a)		Laminated (or equivalent) (1) to prevent eddy currents (1) Suitable material for core (1) to avoid magnetising/hysterises losses (1)	4
	(b)	(i)	First mark for diagram with $V_{\mathrm{L}}, V_{\mathrm{C}}, V_{\mathrm{R}}$ perpendicular with V_{L}, opposite V_{C} [or impedances] (1) resultant reactive impedance is $\omega L-\frac{1}{\omega C}\left[\right.$ or $\left.V_{\text {react }}=V_{\mathrm{L}}-V_{\mathrm{C}}\right]$, shown on the diagram(1) Resultant [justified] $=\sqrt{\text { etc.(1) }}$ or $V=\sqrt{\left(V_{\mathrm{L}}-V_{\mathrm{C}}\right)^{2}+V_{\mathrm{R}}{ }^{2}}$ and $V=\sqrt{\left(I \omega L-\frac{I}{\omega C}\right)^{2}+I^{2} R^{2}}$	
		(ii)	$f=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}} \text { or } \omega=\sqrt{\frac{1}{L C}} \text { or } \omega L=\frac{1}{\omega C} \text { (1) }$	
		(iii)	Convincing substitution and/or algebra (1) $\left[I=\frac{V}{R}=\right] \frac{12}{280}(1)$	2
		(iv)	Since all voltage across $R \underline{\text { or }} V_{\mathrm{L}}$ and V_{C} cancel (or X_{L} and X_{C}) (1) Equation used e.g. $Q=\frac{\omega L}{R}$ or $\frac{1}{\omega C R}$ used (1)	2
		(v)	Answer = 2.97 or (3) (1) Attempt at substitution e.g. accept $\sqrt{\left(10.35 \times 64-\frac{1}{10.35 \times 9.2}\right)^{2}+280^{2}}$ $\begin{aligned} & Z=1286 \Omega(1) \\ & I=\frac{V}{Z}(1)[\text { independent mark }]=9.3 \mathrm{~mA}(1) \end{aligned}$	2 4
		(vi)	ωL doubled and $\frac{I}{\omega C}$ halved(1) X_{C} and X_{L} switched (1)(cf(v)) $(416-1671)^{2}=(1671-416)^{2}$ or equivalent - ve number squared. (1) Alternative: $X_{\mathrm{C}}=1671$ and $X_{\mathrm{L}}=416$ and $R=280$ [used or implied](1) $\mathrm{Z}=1286(\Omega)-$ clearly shown (1) $3^{\text {rd }}$ mark - noticing X_{C} and X_{L} swapped.(1)	3
				[20]

Question			Marking details	Marks
9	(a)	(i)	I. Studied reflected light (from glass plate) (1) Reflection from $2^{\text {nd }}$ plate depends on orientation (not just angle of inc.) / Light asymmetrical about direction of travel / Reflected light polarised (1) II. Developed wave theory mathematically (1) accounted for polarisation by reflection or double refraction or diffraction patterns of various obstacles or why we cannot see around corners (1) - Requires stiff (or solid) medium (where light travels) (1) - which would also support longitudinal waves but not observed or would prevent movement of 'ordinary' objects. (1)	2 2 2
	(b)	(i) (ii) (iii) (iv)	Magnetic fields - rotating vortices (1) Electric fields - stress (or strain) in vortex material (1) Density and stiffness His ether (or equations) predicted $c=\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}$ (1) Experiment confirmed this (within uncertainties).(1) Oscillating E and B fields. (1) E and B at right angles to each other and to the propagation direction. (1)	$\begin{aligned} & 2 \\ & 1 \end{aligned}$ 2
	(c)	(i)	Principle of Relativity understood (either by statement or implied) (1) Not consistent as laws [of E-M] would have special form in this frame (also implies first mark). (1) I. $\quad 6.39 \mu \mathrm{~s}$ II. $\Delta \tau=\Delta t \sqrt{1-\frac{v^{2}}{c^{2}}}(1)=0.625 \mu \mathrm{~s}$ (1) [65.3 $\mu \mathrm{s} \rightarrow 0$ marks $]$ III. $\quad 0.706 \mu \mathrm{~s}(1)$ approximately 10% (or 13%) out (1) [or any other correct and relevant remark]	2 2 2
				[20]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Question} \& Marking details \& Marks

\hline $$
\begin{aligned}
& \hline 10 \\
& \mathrm{~A}
\end{aligned}
$$ \& (a)
(b)
(c)

(d) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(iii)

 \&

LCS - largest plastic deformation

QAS - highest breaking stress

All are same / similar from initial gradients.

HCS has greater strength and stiffness (1)

Carbon in (crystal) lattice (1)

Hinders/opposes/stops dislocation movement (1)

Hence more opposition to plastic deformation in HCS (1)

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=\frac{1}{2} F x(1) \times 1 / 4(1) \\
& m=\rho A l(1)+\text { convincing algebra }(1) \\
& \varepsilon=0.002(1) \\
& v=\frac{1}{2} \sqrt{\frac{700 \times 10^{6} \times 0.002}{8000}}=6.6 \mathrm{~m} \mathrm{~s}^{-1}[\text { answer }](1)
\end{aligned}
$$

Accept either LCS or QAS with sensible reason:

e.g. LCS has a higher breaking speed (1) because the area under the graph is greater / ε at breaking is much bigger (1)

or QAS has a higher speed (1) because the area under the graph in the elastic region is bigger (1)
\end{tabular} \& 4

4
2
2
2

\hline B \& (a)
(b)

(c) \& \& \begin{tabular}{l}
$2.6 \rightarrow 2.7 \mathrm{GPa}$ from the graph (1)

$8.3 \rightarrow 8.65 \mathrm{~kg}$ (1)

Thin fibres have fewer surface imperfections (1) Very thin fibres have no surface imperfections (1)

Thin glass fibres encased in resin / epoxy / plastic material

 \&

2

2

1

[20]
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks
11	(a)	(i) (ii) (iii) (iv)	Same shape, below and longer minimum λ_{0} (1) peaks in same place (1) Peaks/spikes/line spectrum move. $\begin{aligned} & e V=\frac{h c}{\lambda}(1) \\ & \lambda=1.66 \times 10^{-11} \mathrm{~m}(1) \\ & P=I V=9375 \mathrm{~W}(1) \\ & 99.5 \% \text { heat }=0.995 \times 9375=9328 \mathrm{~W}(1) \end{aligned}$ Or comment that roughly all 9375 W dissipated as heat.	2
	(b)		CT detector(s) rotate (1) about patient / analysis point. Multiple detectors output to computer (1) Series of 2D images obtained or 3D image obtained (1)	3
	(c)		Radio waves [2-100 MHz] (1) Resonate or Same/match frequency of [hydrogen] nuclear rotation [or precession]. (1) Causes them to flip/change (1) [Not just: change spin]	3
	(d)	$\begin{aligned} & \text { (i) } \\ & \text { (ii) } \end{aligned}$	crystal deforms / vibrates [when alternating p.d. applied] $\begin{aligned} & \frac{\Delta \lambda}{\lambda}=\frac{2 v}{c}(1) \\ & v=0.9 \mathrm{~m} \mathrm{~s}^{-1}(1) \text { [e.c.f. on missing factor of 2] } \end{aligned}$	1 2
	(e)	(i) (ii)	Mention of free radicals (1) [or equivalent, e.g. produces chemicals/ions/atoms which react/are highly reactive]. Damages DNA/cells/molecules (1) Absorbed dose = energy (absorbed) per unit mass. Dose equivalent $=$ absorbed dose $\times \mathrm{Q}$ [uality] factor.	2 2
				[20]

Question			Marking details	Marks Available
12	(a)	(i) (ii)	$\begin{aligned} \hline \text { Power } & =\text { solar constant } \times \text { area [or by impl.] (1) } \\ & =1.0686 \times 10^{10} \mathrm{~W} / 1.0686 \times 10^{7} \mathrm{~kW} / 10.7 \mathrm{GW} \text { or equiv }(1) . \end{aligned}$ $P=\sigma A T^{4}$ understood [accept $5.67 \times 10^{-8} \times \mathrm{A} \times 5778$] - i.e. 2 terms identified although missing (1) $\begin{aligned} & P=4 \pi r^{2} \text { quoted (1) } \\ & P=3.85 \times 10^{26} \mathrm{~W}(1) \end{aligned}$ $\text { Solar constant }=\frac{3.85 \times 10^{26}}{4 \pi \times\left(1.496 \times 10^{11}\right)^{2}}\left[=1368 \mathrm{~W} \mathrm{~m}^{-2}\right]$	2
	(b) (c)		Hours in one year $=24 \times 365[.25]$ [or by impl.] (1) Total units $=1.0686 \times 10^{7} \times 24 \times 365 \times 0.4$ [or by impl.] (1) Money $=$ units $\times 0.2=£ 7.5$ billion $/ 7.5 \times 10^{11} \mathrm{p} / £ 7.489 \times 10^{9}(1)$ Volume $=$ area \times thickness [or by impl.] (1) Mass $=$ density \times volume [or by impl.] (1) [manip] Mass $=4.95 \times 10^{6} \mathrm{~kg}(1)$	
	(d)		$\begin{aligned} & 4.95 \times 10^{6} \div 2500=198 \text { missions [or by impl.] (1) [ecf from (c)] } \\ & \times 350 \times 10^{6}=£ 69.3 \text { bn [or equiv.] (1) } \end{aligned}$	2
	(e)		Heat engines inefficient [or by impl.] (1) Since $1-\frac{T_{1}}{T_{2}} \simeq 1-\frac{300}{400} \simeq 0.25$ (1) "which is poor" implies first mark. NB. T_{2} in range $373-1700 \mathrm{~K}$ and T_{1} in range $273-900 \mathrm{~K}\left[<T_{2}\right]$	2
	(f)		Reasonable since costs recovered in 9/10 years (1) (ignoring time for 200 shuttle missions) + Any $3 \times(1)$ good points: - Not weather dependant \checkmark - Solar power at night \checkmark - Less/no atmospheric absorption by microwaves \checkmark - Time for 200 shuttle missions \checkmark - Shuttle program ended \checkmark	4
				[20]

